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A linear scale method for calculating electronic properties of large and complex systems is introduced within
a local density approximation. The method is based on the Chebyshev polynomial expansion and the time-
dependent method, which is tested on the calculation of the electronic structure of a model n-type GaAs
quantum dot.
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Linear scale methods for calculating the electronic struc-
tures have been actively investigated in the last decade be-
cause of increasing demands for predicting properties of
large and complex systems with computational cost linear
scale with respect to the system size N �1�. There are several
approaches for achieving linear scaling, such as the divide-
and-conquer �DC� method �2�, the density-matrix minimiza-
tion �DMM� method �3�, the orbital minimization �OM�
method �4�, and the Chebyshev polynomial expansion �CPE�
method �1,5,6�. Computational efficiency and applicability
for specific systems have been mostly tested based on the
tight-binding �TB� formalism. The DC method divides a sys-
tem into subsystems in physical space and obtains the den-
sity matrix for each subsystem. This method is highly effi-
cient if small localization regions can be chosen as
subsystems, but this depends on the problem and becomes
more difficult for calculations based on the finite-difference
�FD� formalism with a large basis set. While the TB method
is very successful in quantum chemistry, care must be taken
for constructing an appropriate basis set for a particular prob-
lem �7�. A calculation based on the FD formalism �8� is
straightforward and is widely used for electronic structure
calculations of semiconductors and biochemical systems.
The DMM and OM methods, which require one to store the
whole density matrix and all of the Wannier functions, re-
spectively, suffer from their large memory requirements. In
the CPE method, the memory requirements are significantly
reduced because only a small number of column vectors is
required to store. Since neither division into subsystems or
the initial guess of the initial state is required, the CPE
method is straightforwardly applied to a wide variety of sys-
tems. The other important advantage of the CPE method is
suitability for parallel implementation. Because the most
time-consuming part of the calculation is matrix-times-
vector multiplication, where each column of the Hamiltonian
matrix can be treated as independent, communications be-
tween clusters are minimized. The CPE method is thus suit-
able for achieving linear scaling based on the FD formalism
with a large basis set.

In the CPE method the electron density is evaluated by
using a matrix representation of the Fermi operator, which is

expanded in the Chebyshev matrix polynomials. The so-
called Gibbs oscillation in the zero temperature case is sup-
pressed by using finite-temperature Fermi operator �9,10�. In
the tight binding approach, the linear scaling is obtained by a
truncated Hamiltonian which retains only matrix elements
inside a localization region �11�. Reasonably small localiza-
tion can be defined for a tight-binding approach with, for
example, atom-centered basis functions. In the FD formal-
ism, it is not obvious how to define a localization region
where basis functions are retained. Moreover, because the
number of basis functions within a localization region be-
comes much larger than the tight binding approach, the
crossover point where the linear scaling approach is faster
than a conventional approach such as a conjugate gradient
method �CGM� becomes significantly larger.

This leads us to utilize the other approach of calculating
the trace of a large matrix by using random vectors �12,13�.
In calculating physical quantities such as energy, electron
density, or linear response function, the trace of a relevant
operator A needs to be calculated. If A is expressed in terms
of a basis set �q, q=1, . . . ,Nd as tr�A�=�q=1

Nd Aqq, the calcu-
lation of this part costs O�Nd

2� if the matrix is expanded in the
Chebyshev matrix polynomials �1�. By introducing a random
phase vector as defined by �����q=1

N �q��q, where 	�q�
 is a
basis set and �q are a set of random phase variables, the trace
is evaluated at the cost of O�Nd� as given by tr�A�
= ��� �A ����, where ��¯�� stands for statistical average. The
overall linear scaling is obtained by this method. The random
phase vector was shown to give results with the smallest
statistical error �13�. This approach is also known to show a
useful feature called the self-averaging effect that the fluc-
tuation in some physical quantities decreases with increase in
Nd for sparse or banded matrices Anm. With a combination of
this approach and the time-dependent method �14� �CPE-
TDM�, linear response functions or electron density of states
�DOS� are calculated by integrating the time-dependent
Schrödinger equation without calculating eigenenergies or
eigenstates. The computational time of CPE-TDM scales as
O�N�, as compared to that of a conventional method such as
the CGM, which grows as O�N2�. Thus CPE-TDM enables
us to calculate electronic properties of large systems which
require prohibitively large computational time by CGM.
CPE-TDM was applied to calculate the optical properties of
hydrogenated Si nanocrystals containing atoms more than
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10 000 within the empirical pseudopotential formalism
�15,16�, the optical properties of carbon nanocrystals �17�
and polysilane �18�, and the electron spin resonance spec-
trum of s=1/2 antiferromagnet Cu benzoate �19�, which
have proved the advantages of CPE-TDM. However, CPE-
TDM has not been applied to calculation of the electronic
structure within a local density approximation �LDA�. Appli-
cations of a linear scaling method with the self-consistent-
field level of theory are still very limited, but this level of
calculation using Gaussian basis sets has been demonstrated
to be practical �20�. In this paper, we report on an implemen-
tation of CPE-TDM for a large scale calculation of the elec-
tronic structure of n-type GaAs quantum dot �QD� �21,22�
within a LDA based on a FD formalism and compare the
results with a CGM.

The model structure is a 20-nm-wide GaAs quantum well
sandwiched by undoped AlxGa1−xAs �x=0.3� barriers, which
confine the electrons with the effective mass m* in the z
direction. For QDs, the electrons are assumed to be laterally
confined to a harmonic oscillator with frequency �0, which
may be created by a surface gate structure �22� in experi-
ments. The electrons are assumed to be supplied from
5-nm-thick Si-doped AlxGa1−xAs layer, located 20 nm above
the GaAs quantum well layer. The Fermi-energy �EF� is
taken as the origin of the energy. The Fermi-level pinning
model is assumed �23�. The number of the electrons in a QD
is not fixed to an integer number and is determined by EF
and the potential energy.

The model Hamiltonian of the system within the LDA is

H = p2 / 2m* + 1
2m*�0

2�x2 + y2� + Vc�z� + VH�r� + Vx�r� , �1�

where Vc�z�, VH�r�, and Vx�r� are the vertical confining po-
tential, the Hartree potential, and the exchange potential, re-
spectively. A 3D mesh of 64�64�8 is used for the calcu-
lation of the electron density, and 64�64�16 is used for the
calculation of the potentials. The axis perpendicular to the
quantum well layer is taken to be the z direction and the grid
spacing �x is fixed to be 5 nm. The Hamiltonian is dis-
cretized in real-space by the higher-order finite difference
method �24,25�. The correlation potential, which gives only a
small contribution, is ignored �26�.

The electron density at finite temperature is given by �26�
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FIG. 1. �Color online� �a� The electron density distribution ob-
tained by CPE-TDM. 128 sets of random vectors are used at each
self-consistent iteration procedure. �b� The electron density distri-
bution obtained by CGM.
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FIG. 2. �Color online� �a� Cross-sectional views of the calcu-
lated Hartree potentials on the plane at the center of the quantum
well layer obtained by CPE-TDM �VH

CPE-TDM�r�� with �i� 8, �ii� 16,
�iii� 32, �iv� 64, and �v� 128 sets of random phase vectors for ex-
tracting n�r� at each self-consistent iteration procedure, and �vi�
VH�x� obtained by CGM. �b� Differences of obtained Hartree po-
tentials VH

CPE-TDM�r�−VH
CGM�r� with �i� 8, �ii� 16, �iii� 32, �iv� 64,

and �v� 128 sets of random phase vectors. �c� Standard deviations of
the calculated Hartree potentials depending on the number of ran-
dom phase vectors at each self consistent iteration procedure jmax.
The best fitted curve proportional to 1/�jmax is also shown.
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n�r� = �
j

� j
*�r�� j�r�f�Ej − EF� �2�

where � j and Ej are the one-particle wave function and the
energy of the jth electron state, respectively, which are ob-
tained by CGM. f�Ej −EF�= 1

e��Ej−EF�+1
is the Fermi distribution

function at inverse temperature �. We use �=4000 eV−1 cor-
responding to the temperature T=2.9 K. The electron states
above EF are partially occupied due to this finite temperature
effect. The introduction of finite temperature accelerate con-
vergence of the self-consistent-field loop.

In CPE-TDM, a random phase vector as defined by ���
��q=1

N �q��q, where �q are a set of random phase variables
�q=ei�q, is used as an initial state. Here � is a Nx�Ny �Nz
column vector for a system defined by a real-space uniform
grid of Nx�Ny �Nz. The electron density n�r� is extracted
by the Fermi operator function f�H�= 1

e��H−EF�+1
as

n�r� = ������f�H��r��2�� , �3�

where � is connected to a real temperature. The Fermi op-
erator is evaluated by the Chebyshev polynomial expansion

f�H���� = �
k

ak���Tk�H���� . �4�

The length of the Chebyshev expansion for precision 10−D

is given by �9,10�

P = 2
3 �D − 1���E , �5�

where �E= �Emax−Emin� /2. We use D=6, �E=1.0 eV, �
=4000 eV−1, giving P=13 333. A calculation was also per-
formed with D=9, and we find that the differences in the
total number of electrons �Ne� and the Hartree potential �VH�
between the two cases of D=6 and D=9 were less than
1�10−3 and 1�10−6 eV, respectively.

The electron density is calculated with jmax sets of ��� as
n�r�=� j=1

j=jmax�r � f�H� �� j� / jmax. The fluctuation for the ran-
dom phase vector is �13,27�

�H/L 
	

2m*��x�3

�2
�jmaxN

, �6�

where L=Nx�Ny��x as the number of meshes N→
. The
statistical error decreases as 1/�jmax in general.

While it is known that other representation of a smoothed
step function such as a complementary error function yields
improvements of degree of polynomial expansion �28�, we
use the Fermi operator because this is physically correct for
electronic structure calculations at finite temperature. The
Hartree and exchange potentials are calculated by using Eq.
�3�. Therefore, it is not necessary to obtain eigenvalues or
eigenfunctions. The new solution of the potential VH

new�r� is
combined with the solution obtained for the previous itera-
tion by VH�r�= �1−��VH

old�r�+�VH
new�r�. Similarly, in order

to reduce the statistical fluctuation, n�r� is combined with the
density obtained for the previous iteration by n�r�= �1
−��nold�r�+�nnew�r�. The parameter � is fixed to be 0.08,
and the parameter � is varied between 0.3 and 0.1.

A real-time Green’s function G��l+ i� is calculated by a
time evolution method by solving a homogeneous
Schrödinger equation numerically with an initial condition
��q , t=0�= �q� as �16�

�̃l�q,T� = �− i��
0

T

dt���q,t��ei��l+i�t� �7�


1

�l + i − H
�q� �8�

=G��l + i��q� . �9�
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FIG. 3. �a� Density of states ������ obtained by CPE-TDM with
jmax=kmax= �i� 8, �ii� 16, �iii� 32, �iv� 64, and �v� 128 sets of random
phase vectors for extracting n�r� at each self-consistent iteration
procedure and for evaluating ����. �vi� ���� obtained by CPE-
TDM with eight sets of random phase vectors for extracting n�r�
and kmax=64 sets of random phase vectors for evaluating ����. �vii�
���� obtained by CGM. �b� Standard deviations of the difference of
the peak heights of the DOS obtained by CPE-TDM and by CGM
depending on jmax �solid circles�. Standard deviation for CPE-TDM
with jmax= �8� at each self consistent iteration procedure and kmax

=64 for evaluating ���� is shown �open circle� The best fitted curve
proportional to 1/�jmax is also shown. �c� Total number of electrons
�Ne� depending on jmax. The horizontal line shows Ne=77.1 ob-
tained by CGM.
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This method is as efficient as the CPE method with a
carefully chosen Gibbs damping factor �6,9�. The DOS is
then calculated at the cost of O�Nd� as given by

���� = − �1/�� Im	Tr�G�� + i��
 , �10�

=−
1

�
Im��

q,q�

��ei��q−�q�����q�G�� + i��q��� �11�

=− �1/�� Im������G�� + i������� . �12�

The DOS is calculated with kmax sets of ���. The energy
resolution  is chosen to be 0.25 meV. It should be noted
that kmax used for calculating the DOS can be independently
chosen from jmax for each self-consistent iteration proce-
dures.

Model calculations are performed for GaAs QDs contain-
ing about 77 electrons. We take �0=3 meV for a typical
GaAs QD �21�. The number of the self-consistent iterations
is fixed to 100 for both the CGM and CPE-TDM calcula-
tions. The potential is converged to �VH�r�−VH

new�r��
�0.003 meV for the CGM calculation. The electron density
distributions are shown in Fig. 1 for CPE-TDM with jmax
=128 and CGM. The calculated electron density distribution
reasonably agrees with the result by a CGM within the sta-
tistical fluctuations. The Friedel-type spatial oscillations of
the electron density �29� are reproduced in both the results
by the CPE-TDM and CGM.

The calculated Hartree potentials reasonably agree with
the potential obtained by the CGM as shown in Fig. 2�a�.
Differences of the calculated Hartree potentials with that by
the CGM are examined in Fig. 2�b�. The absolute values of
the difference are smaller than 1.0 and 0.4 meV for jmax=8
and 16, respectively. Figure 2�c� shows that the standard de-
viations of the differences of the calculated Hartree poten-
tials follows the curve proportional to 1/�jmax as expected.

The calculated DOS are shown in Fig. 3. For CPE-TDM,
the self-consistent iteration procedures are performed with
jmax=8, 16, 32, 64, and 128. The same number of random
phase vectors are used for evaluating ���� except for the

case of jmax=8, where ���� is evaluated with kmax=8 and 64.
It can be seen that the statistical fluctuations decrease with
increase in jmax in calculating ����. There are two types of
the fluctuations observed in Fig. 3. One is the fluctuation in
the peak energy positions, and the other is the fluctuation in
the peak heights. The former can be reduced by increasing
jmax and by decreasing the mixing parameter �. The latter
also depends on kmax. In fact, the fluctuations in the peak
heights are reduced by increasing kmax from 8 to 64 with
small changes in the peak energy positions in the case of
jmax=8 as shown in Fig. 3�b�. Figure 3�b� shows that the
standard deviations of the peak heights also follows the
curve proportional to 1/�kmax.

Finally we note that the statistical fluctuation of the total
number of electrons �Ne� is smaller than that of DOS because
of the self-averaging effect. Figure 3�c� shows calculated Ne
depending on jmax. The statistical errors as compared with
Ne=77.1 by CGM are as small as 2% for jmax=8, which
indicates that the self-averaging effect is effective for a
sparse banded matrix case as illustrated in this paper.

Our linear scale method opens up possibilities for calcu-
lating the electronic and optical properties of large and com-
plex systems, such as QD arrays with interaction between
QDs and devices employing the Rashba-type spin-orbit in-
teraction �30�. It should also be possible to calculate the elec-
tronic structure of nanostructures within a LDA with ab ini-
tio pseudopotentials. Because the Green’s function can be
effectively estimated by CPE-TDM, the properties of the
electronic system such as the DC and Hall conductivities,
and the optical absorption spectra, are obtained within O�N�
computational costs.

In conclusion, it has been demonstrated that CPE-TDM
can be applied to a large scale calculation of a model QD
within a LDA based on a FD formalism despite the presence
of the statistical fluctuations of the calculated quantities
originated from the random phase vectors.
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